Refine Your Search

Topic

Search Results

Standard

DEEMBRITTLEMENT VERIFICATION TEST

2020-11-19
CURRENT
USCAR7-2
This standard outlines test methods and practices which can detect embrittlement of steel parts. It is a process control or referee verification test. The risk of embrittlement of steel is minimized by using best practices in the finishing/coating process. One such practice is described in SAE/USCAR-5, Avoidance of Hydrogen Embrittlement of Steel.
Standard

PERFORMANCE SPECIFICATION FOR CABLE-TO-TERMINAL ELECTRICAL CRIMPS

2020-01-22
CURRENT
USCAR21-4
This specification defines test methods and requirements for validation of solderless crimped connections. The purpose of this test is to simulate in the lab the stress seen in a typical life (15 years and 150000 miles) for a crimp connection and assure the crimp is mechanically strong and electrically stable. This specification was developed for use with stranded automotive copper wire. Only where specifically mentioned are other constructions or other core materials (aluminum, clad, steel core, etc.) applicable. This specification does not apply to wire types not mentioned, such as coaxial cable crimps, unless a USCAR-21 test is specifically referenced in the test specification for that wire type. This specification is based on accepted levels of environmental exposure for automotive applications.
Standard

GRAIN FLOW PATTERN FOR BOLTS, SCREWS, AND STUDS

2019-03-14
CURRENT
USCAR8-4
This specification covers the grain flow pattern requirements in headed bolts, screws, and studs. The heading practice in the manufacture of the bolt, screw, or stud sets the grain flow pattern, but it is also greatly influenced by the fastener and tooling design as well as cold-forging setup. The use of tooling design simulation software is recommended and a commonly used practice that provides reliable forging predictions for superior grain flow quality.
Standard

PERFORMANCE SPECIFICATION FOR WELDED WIRE-TO-WIRE SPLICES

2018-06-14
CURRENT
USCAR45
SAE/USCAR-45 defines test methods and performance requirements for ultrasonically-welded wire-to-wire splices for automotive applications. Face-to-face, butt splice, and center strip configurations per Figure 1 can be tested. The tests defined in this specification subject samples on test to stresses that simulate a lifetime of exposure for a road vehicle. Stresses called out in this specification include thermal shock, temperature/humidity cycling and mechanical stress from different directions.
Standard

ROAD VEHICLES – 60 V AND 600 V SINGLE CORE (ISO/METRIC) CABLES – DIMENSIONS, TEST METHODS AND REQUIREMENTS

2017-07-13
CURRENT
USCAR23-1
This International Standard specifies the dimensions, test methods, and requirements for single core 60 V cables intended for use in road vehicle applications where the nominal system voltage is ≤ (60 V DC or 25 V AC). It also specifies additional test methods and/or requirements for 600 V cables intended for use in road vehicle applications where the nominal system voltage is > (60 V DC or 25 V AC) to ≤ (600 V DC or 600 V AC). It also applies to individual cores in multi-core cables. See ISO 6722 for “Temperature Class Ratings”.
Standard

PERFORMANCE SPECIFICATION FOR AUTOMOTIVE WIRE HARNESS RETAINER CLIPS

2017-05-10
HISTORICAL
USCAR44
This specification describes a method and acceptance criteria for testing automotive wire harness retainer clips. Retainer clips are plastic parts that hold a wire harness or electrical connector in a specific position. Typical plastic retainers work by having a set of “branches” that can be inserted into a hole sized to be easy to install but provide acceptable retention. This specification tests retainer clips for mechanical retention when exposed to the mechanical and environmental stresses typically found in automotive applications over a 15-year service life. This specification has several test options to allow the test to match to the expected service conditions. The variability of applications typically arises a) from different ambient temperatures near the clip, different proximity to automotive fluids, different exposure to standing water or water spray and different thicknesses of the holes that the clip is inserted into.
Standard

PERFORMANCE SPECIFICATION FOR ULTRASONICALLY WELDED WIRE TERMINATIONS

2016-04-05
HISTORICAL
USCAR38-1
This specification defines test methods and performance criteria for evaluating ultrasonically welded wire-to-terminal metallurgical bonds. The examples used are specific to the linear weld type of process equipment. USCAR-38 is not applicable for “Splice Welding”. The specification is applicable to wire-on-pad configurations with a typical weld shown in Figure 1. This test specification subjects parts under test to environmental exposures to simulate a lifetime of field exposure for a road vehicle. Exposures called-out in this specification include Thermal Shock, Temperature Humidity Cycling and mechanical abuse. This test specification is intended to evaluate the strength and performance of the interface between wires to an electrical terminal. Validation of the performance of the Terminal is a separate task and can be accomplished using a component validation test such as SAE/USCAR-2, which evaluates whether the entire connection system is acceptable.
Standard

Ergonomics Specification for Electrical Connections

2016-03-10
CURRENT
USCAR25-3
This document describes the design relative to assembly force, and hand clearance guidelines for conventional hand-plug, mechanical assist and twist lock electrical connectors, as well as Connector Position Assurances (CPAs). The minimum values associated with this design guide need to be evaluated against other critical characteristics that impact quality, efficiency and other traits of assembly feasibility. All possible designs and applications could not be anticipated in creating these guidelines. Where there are questions of adherence to this document, such as use of an “off-the-shelf” design, always consult the responsible Ergonomics Department.
Standard

Ergonomics Specification for Electrical Connections

2016-02-15
HISTORICAL
USCAR25-2
This document describes the design relative to assembly force, and hand clearance guidelines for conventional hand-plug, mechanical assist and twist lock electrical connectors, as well as Connector Position Assurances (CPAs). The minimum values associated with this design guide need to be evaluated against other critical characteristics that impact quality, efficiency and other traits of assembly feasibility. All possible designs and applications could not be anticipated in creating these guidelines. Where there are questions of adherence to this document, such as use of an “off-the-shelf” design, always consult the responsible Ergonomics Department.
Standard

PERFORMANCE SPECIFICATION FOR CABLE-TO-TERMINAL ELECTRICAL CRIMPS

2014-11-01
HISTORICAL
USCAR21-3
This specification defines test methods and requirements for validation of solderless crimped connections. The purpose of this test is to simulate in the lab the stress seen in a typical life (15 years and 150,000 miles) for a crimp connection and assure the crimp is mechanically strong and electrically stable. This specification was developed for use with stranded automotive copper wire. Only where specifically mentioned are other constructions or other core materials (aluminum, clad, steel core, etc.) applicable. This specification does not apply to wire types not mentioned. This specification is based on accepted levels of environmental exposure for automotive applications.
Standard

Grain Flow Pattern for Bolts, Screws, and Studs

2013-12-31
HISTORICAL
USCAR8-3
This specification covers the grain flow pattern requirements in headed bolts, screws, and studs. The heading practice in the manufacture of the bolt, screw, or stud sets the grain flow pattern, but it is also greatly influenced by the fastener design.
Standard

USCAR INFLATOR TECHNICAL REQUIREMENTS AND VALIDATION

2013-04-30
HISTORICAL
USCAR24-2
This specification establishes the performance, and validation requirements for the inflator assembly used in airbag modules. Seatbelt Pretensioners are covered as a reference only.
Standard

Performance Specification for Automotive Electrical Connector Systems

2013-02-01
HISTORICAL
USCAR2-6
Procedures included within this specification are intended to cover performance testing at all phases of development, production, and field analysis of electrical terminals, connectors, and components that constitute the electrical connection systems in low voltage (0 – 20 VDC) road vehicle applications. These procedures are only applicable to terminals used for In-Line, Header, and Device Connector systems. They are not applicable to Edge Board connector systems, twist lock connector systems, > 20 VAC or DC, or to eyelet-type terminals. No electrical connector, terminal, or related component may be represented as having met USCAR/EWCAP specifications unless conformance to all applicable requirements of this specification have been verified and documented. All required verification and documentation must be done by the supplier of the part or parts.
Standard

Dimensional and Performance Specification for After-Market Gasoline Engine Oil Filters

2013-01-30
HISTORICAL
USCAR36
This specification defines the dimensional and performance requirements for aftermarket spin-on oil filters intended for use on gasoline engines. Filters meeting this specification may also be suitable for use on some diesel applications. Filters meeting these dimensional limits are intended to meet the oil filter fit and package requirements for engine and vehicle designs. Filters meeting the performance requirements are intended to maintain sufficient durability to support many of the OEM's recommended oil change intervals. Some OEM engines may require special filters for which this specification would not support.
Standard

DEEMBRITTLEMENT VERIFICATION TEST

2012-07-30
HISTORICAL
USCAR7-1
This standard outlines test methods and practices which can detect embrittlement of steel parts. It is a process control or referee verification test. The risk of embrittlement of steel is minimized by using best practices in the finishing/coating process. One such practice is described in SAE/USCAR-5, Avoidance of Hydrogen Embrittlement of Steel.
Standard

AVOIDANCE OF HYDROGEN EMBRITTLEMENT OF STEEL

2012-07-01
HISTORICAL
USCAR5-4
This standard outlines the conditions that enhance the risk of hydrogen embrittlement of steel and define the relief procedures required to minimize the risk of hydrogen embrittlement. It is intended to control the process.
Standard

WIRING COMPONENT DESIGN GUIDELINES

2009-07-10
HISTORICAL
USCAR12-3
This document gives general guidelines to be used during the connector design stage. Various guidelines may not apply in all situations. Therefore, sound engineering judgment must be used in their application. Consider these guidelines as the basis for connector and wiring DFMEA’s. Items in this document are grouped by DFMEA functional requirements. Groups are as follows: A Electrical Continuity B Electrical Isolation/Sealing C Device Assembly D Harness Assembly E Vehicle Assembly F Materials G Serviceability H Environmental Requirements I High Voltage (≥ 60V) Application Requirements
X